3.458 \(\int \sqrt{a+b \sinh ^2(e+f x)} \tanh ^3(e+f x) \, dx\)

Optimal. Leaf size=126 \[ \frac{(2 a-3 b) \sqrt{a+b \sinh ^2(e+f x)}}{2 f (a-b)}-\frac{(2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{2 f \sqrt{a-b}}+\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 f (a-b)} \]

[Out]

-((2*a - 3*b)*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a - b]])/(2*Sqrt[a - b]*f) + ((2*a - 3*b)*Sqrt[a + b*Si
nh[e + f*x]^2])/(2*(a - b)*f) + (Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2)^(3/2))/(2*(a - b)*f)

________________________________________________________________________________________

Rubi [A]  time = 0.125283, antiderivative size = 126, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {3194, 78, 50, 63, 208} \[ \frac{(2 a-3 b) \sqrt{a+b \sinh ^2(e+f x)}}{2 f (a-b)}-\frac{(2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{2 f \sqrt{a-b}}+\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 f (a-b)} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]^3,x]

[Out]

-((2*a - 3*b)*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a - b]])/(2*Sqrt[a - b]*f) + ((2*a - 3*b)*Sqrt[a + b*Si
nh[e + f*x]^2])/(2*(a - b)*f) + (Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2)^(3/2))/(2*(a - b)*f)

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \sqrt{a+b \sinh ^2(e+f x)} \tanh ^3(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x \sqrt{a+b x}}{(1+x)^2} \, dx,x,\sinh ^2(e+f x)\right )}{2 f}\\ &=\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 (a-b) f}+\frac{(2 a-3 b) \operatorname{Subst}\left (\int \frac{\sqrt{a+b x}}{1+x} \, dx,x,\sinh ^2(e+f x)\right )}{4 (a-b) f}\\ &=\frac{(2 a-3 b) \sqrt{a+b \sinh ^2(e+f x)}}{2 (a-b) f}+\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 (a-b) f}+\frac{(2 a-3 b) \operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\sinh ^2(e+f x)\right )}{4 f}\\ &=\frac{(2 a-3 b) \sqrt{a+b \sinh ^2(e+f x)}}{2 (a-b) f}+\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 (a-b) f}+\frac{(2 a-3 b) \operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sinh ^2(e+f x)}\right )}{2 b f}\\ &=-\frac{(2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{2 \sqrt{a-b} f}+\frac{(2 a-3 b) \sqrt{a+b \sinh ^2(e+f x)}}{2 (a-b) f}+\frac{\text{sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )^{3/2}}{2 (a-b) f}\\ \end{align*}

Mathematica [A]  time = 0.405799, size = 88, normalized size = 0.7 \[ \frac{(\cosh (2 (e+f x))+2) \text{sech}^2(e+f x) \sqrt{a+b \sinh ^2(e+f x)}-\frac{(2 a-3 b) \tanh ^{-1}\left (\frac{\sqrt{a+b \sinh ^2(e+f x)}}{\sqrt{a-b}}\right )}{\sqrt{a-b}}}{2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]^3,x]

[Out]

(-(((2*a - 3*b)*ArcTanh[Sqrt[a + b*Sinh[e + f*x]^2]/Sqrt[a - b]])/Sqrt[a - b]) + (2 + Cosh[2*(e + f*x)])*Sech[
e + f*x]^2*Sqrt[a + b*Sinh[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Maple [C]  time = 0.102, size = 43, normalized size = 0.3 \begin{align*}{\frac{1}{f}\mbox{{\tt ` int/indef0`}} \left ({\frac{ \left ( \sinh \left ( fx+e \right ) \right ) ^{3}}{ \left ( \cosh \left ( fx+e \right ) \right ) ^{4}}\sqrt{a+b \left ( \sinh \left ( fx+e \right ) \right ) ^{2}}},\sinh \left ( fx+e \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^3,x)

[Out]

`int/indef0`((a+b*sinh(f*x+e)^2)^(1/2)*sinh(f*x+e)^3/cosh(f*x+e)^4,sinh(f*x+e))/f

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sinh \left (f x + e\right )^{2} + a} \tanh \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^3,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*tanh(f*x + e)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 7.67511, size = 4352, normalized size = 34.54 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^3,x, algorithm="fricas")

[Out]

[-1/4*(((2*a - 3*b)*cosh(f*x + e)^5 + 5*(2*a - 3*b)*cosh(f*x + e)*sinh(f*x + e)^4 + (2*a - 3*b)*sinh(f*x + e)^
5 + 2*(2*a - 3*b)*cosh(f*x + e)^3 + 2*(5*(2*a - 3*b)*cosh(f*x + e)^2 + 2*a - 3*b)*sinh(f*x + e)^3 + 2*(5*(2*a
- 3*b)*cosh(f*x + e)^3 + 3*(2*a - 3*b)*cosh(f*x + e))*sinh(f*x + e)^2 + (2*a - 3*b)*cosh(f*x + e) + (5*(2*a -
3*b)*cosh(f*x + e)^4 + 6*(2*a - 3*b)*cosh(f*x + e)^2 + 2*a - 3*b)*sinh(f*x + e))*sqrt(a - b)*log((b*cosh(f*x +
 e)^4 + 4*b*cosh(f*x + e)*sinh(f*x + e)^3 + b*sinh(f*x + e)^4 + 2*(4*a - 3*b)*cosh(f*x + e)^2 + 2*(3*b*cosh(f*
x + e)^2 + 4*a - 3*b)*sinh(f*x + e)^2 + 4*sqrt(2)*sqrt(a - b)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^2 + 2*
a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2))*(cosh(f*x + e) + sinh(f*x + e)) +
4*(b*cosh(f*x + e)^3 + (4*a - 3*b)*cosh(f*x + e))*sinh(f*x + e) + b)/(cosh(f*x + e)^4 + 4*cosh(f*x + e)*sinh(f
*x + e)^3 + sinh(f*x + e)^4 + 2*(3*cosh(f*x + e)^2 + 1)*sinh(f*x + e)^2 + 2*cosh(f*x + e)^2 + 4*(cosh(f*x + e)
^3 + cosh(f*x + e))*sinh(f*x + e) + 1)) - 2*sqrt(2)*((a - b)*cosh(f*x + e)^4 + 4*(a - b)*cosh(f*x + e)*sinh(f*
x + e)^3 + (a - b)*sinh(f*x + e)^4 + 4*(a - b)*cosh(f*x + e)^2 + 2*(3*(a - b)*cosh(f*x + e)^2 + 2*a - 2*b)*sin
h(f*x + e)^2 + 4*((a - b)*cosh(f*x + e)^3 + 2*(a - b)*cosh(f*x + e))*sinh(f*x + e) + a - b)*sqrt((b*cosh(f*x +
 e)^2 + b*sinh(f*x + e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2)))/((a
 - b)*f*cosh(f*x + e)^5 + 5*(a - b)*f*cosh(f*x + e)*sinh(f*x + e)^4 + (a - b)*f*sinh(f*x + e)^5 + 2*(a - b)*f*
cosh(f*x + e)^3 + 2*(5*(a - b)*f*cosh(f*x + e)^2 + (a - b)*f)*sinh(f*x + e)^3 + (a - b)*f*cosh(f*x + e) + 2*(5
*(a - b)*f*cosh(f*x + e)^3 + 3*(a - b)*f*cosh(f*x + e))*sinh(f*x + e)^2 + (5*(a - b)*f*cosh(f*x + e)^4 + 6*(a
- b)*f*cosh(f*x + e)^2 + (a - b)*f)*sinh(f*x + e)), -1/2*(((2*a - 3*b)*cosh(f*x + e)^5 + 5*(2*a - 3*b)*cosh(f*
x + e)*sinh(f*x + e)^4 + (2*a - 3*b)*sinh(f*x + e)^5 + 2*(2*a - 3*b)*cosh(f*x + e)^3 + 2*(5*(2*a - 3*b)*cosh(f
*x + e)^2 + 2*a - 3*b)*sinh(f*x + e)^3 + 2*(5*(2*a - 3*b)*cosh(f*x + e)^3 + 3*(2*a - 3*b)*cosh(f*x + e))*sinh(
f*x + e)^2 + (2*a - 3*b)*cosh(f*x + e) + (5*(2*a - 3*b)*cosh(f*x + e)^4 + 6*(2*a - 3*b)*cosh(f*x + e)^2 + 2*a
- 3*b)*sinh(f*x + e))*sqrt(-a + b)*arctan(-1/2*sqrt(2)*sqrt(-a + b)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x + e)^
2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2))/((a - b)*cosh(f*x + e) + (a
- b)*sinh(f*x + e))) - sqrt(2)*((a - b)*cosh(f*x + e)^4 + 4*(a - b)*cosh(f*x + e)*sinh(f*x + e)^3 + (a - b)*si
nh(f*x + e)^4 + 4*(a - b)*cosh(f*x + e)^2 + 2*(3*(a - b)*cosh(f*x + e)^2 + 2*a - 2*b)*sinh(f*x + e)^2 + 4*((a
- b)*cosh(f*x + e)^3 + 2*(a - b)*cosh(f*x + e))*sinh(f*x + e) + a - b)*sqrt((b*cosh(f*x + e)^2 + b*sinh(f*x +
e)^2 + 2*a - b)/(cosh(f*x + e)^2 - 2*cosh(f*x + e)*sinh(f*x + e) + sinh(f*x + e)^2)))/((a - b)*f*cosh(f*x + e)
^5 + 5*(a - b)*f*cosh(f*x + e)*sinh(f*x + e)^4 + (a - b)*f*sinh(f*x + e)^5 + 2*(a - b)*f*cosh(f*x + e)^3 + 2*(
5*(a - b)*f*cosh(f*x + e)^2 + (a - b)*f)*sinh(f*x + e)^3 + (a - b)*f*cosh(f*x + e) + 2*(5*(a - b)*f*cosh(f*x +
 e)^3 + 3*(a - b)*f*cosh(f*x + e))*sinh(f*x + e)^2 + (5*(a - b)*f*cosh(f*x + e)^4 + 6*(a - b)*f*cosh(f*x + e)^
2 + (a - b)*f)*sinh(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sinh ^{2}{\left (e + f x \right )}} \tanh ^{3}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)**2)**(1/2)*tanh(f*x+e)**3,x)

[Out]

Integral(sqrt(a + b*sinh(e + f*x)**2)*tanh(e + f*x)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sinh \left (f x + e\right )^{2} + a} \tanh \left (f x + e\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^3,x, algorithm="giac")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*tanh(f*x + e)^3, x)